DIBELS Math

DIBELS ${ }^{\circ}$ Math

Essential Workshop

Workshop Objectives

- Understand the research behind DIBELS Math
- Learn how to give and score DIBELS Math
- Begin to link DIBELS Math to Vmath Summer

Workshop Agenda

Part 1: DIBELS Math Foundations

Part 2: Beginning Quantity Discrimination (BQD)
Part 3: Number Identification Fluency (\#IDF)
Part 4: Next Number Fluency (N\#F)
Part 5: Advanced Quantity Discrimination (AQD)
Part 6: Missing Number Fluency (?\#F)
Part 7: Computation (C) Test, Score, Response Pattern Analysis
Part 8: Concepts \& Applications (C\&A) Test, Score, Response Pattern Analysis
Part 9: Common Core State Standards \& Vmath Modules
Part 10: Next Steps... Follow-up Workshop in PM for Early Numeracy Skills

DIBELS ${ }^{\circ}$ Math is One Part of an Effective School-wide System

Curriculum and
Goal
Assessment Instruction
Student Success
100% of Students will meet goals

Numeracy
Environment and Resources

Key Features of DIBELS ${ }^{\circ}$ Math

- Universal Screening and Progress Monitoring
- Standardized
- Timed
- Brief
- Simple Scoring
- Predictive-Benchmark Goals \& Composite Scores

DIBELS® Math Measures

Early Numeracy

-Beginning Quantity Discrimination

- Number Identification Fluency
-Next Number Fluency
-Advanced Quantity Discrimination
-Missing Number Fluency
Computation
Concepts and Applications

Measures by Grade

	Beginning Quantity Discrimination	Number Identification	Next Number Fluency	Advanced Quantity Discrimination	Missing Number Fluency	Computation	Concepts and Apolications
K							
$1^{\text {st }}$							
$2^{\text {nd }}$							
$3^{\text {rd }}$							
$4^{\text {th }}$							
$5^{\text {th }}$							
$6^{\text {th }}$							

DIBELS® Math Benchmark Goals

What is a Benchmark Goal?

A research-based target score:

- Represents the lowest level of performance on a measure that predicts reaching the next goal
- Consists of three parts: a basic early numeracy skill, a level of performance, and a point in time
- If a student achieves a benchmark goal, the odds are in favor of that student achieving later mathematics outcomes.

How are the Benchmark Goals derived?

Based on longitudinal research examining how a score on a measure at a point in time predicts later math outcomes

Three Levels of Performance Compared to Benchmark Goals

If a student achieves a Benchmark Goal, the odds are in favor of that student achieving later mathematics outcomes.

- At or Above Benchmark: Odds are generally 80% to 90% of achieving subsequent benchmark goals and important mathematics outcomes. Student is likely to make adequate progress with effective core instruction.
- Below Benchmark: Odds are generally 40% to 60% of achieving subsequent benchmark goals and important mathematics outcomes. Student is likely to need strategic support to make adequate progress.
- Well Below Benchmark: Odds are generally 10\% to 20\% of achieving subsequent benchmark goals and important mathematics outcomes. Student is likely to need intensive support to make adequate progress.

Benchmark Goals and Local Norms

- Benchmark Goals are available for the

Early Numeracy measures and Computation ($1^{\text {st }}, 2^{\text {nd }}, 4^{\text {th }}$, and $5^{\text {th }}$ grade)

- Schools should use local normative information, available through DIBELSnet, for Computation and Concepts \& Applications and in $3^{\text {rd }}$ and $6^{\text {th }}$ grade while the Benchmark Goals are developed during the 2014-2015 school year.

Interpreting Results: Local Norms

Local norms look at a student's performance relative to your school/district

- $1 / 2$ of the students will be at or below average and $1 / 2$ of the students will be at or above average
- The average only applies to your school/district
- Demographics of your school/district must be taken into account when examining performance
- Other districts may be higher or lower

The magnitude of the discrepancy can be used to determine whether intervention is necessary, and to set instructional goals.
Use the following rule of thumb:

- $<20 \%$ ile $=$ at risk
- 20 \%ile-40\%ile = some risk
- > 40 \%ile = low risk

Composite Scores

- Composite scores provide the best overall estimate of the student's skills.
- Composite scores take all of the measures into consideration.
- Different weights are given to different measures depending on the time of year.
- Composite scores may increase or decrease because the number of measures included may vary (e.g. $1^{\text {st }}$ grade from fall to winter).

Linkages to Math Research

- Early Numeracy based on foundational skills required to develop number sense
- Number sense involves basic "intuitions" and ideas about numbers (Lee et al., 2008)
- includes the ability to compare the magnitude of numbers, to understand the relative effect of arithmetical operations on numbers, and to have meaningful referents for number and quantity (NCTM, 1989)
- Although hard to define, number sense predicts academic achievement (Berch, 2005; Gersten et al., 2005)
- Number sense has been operationalized in various ways (see Lago \& DiPerna, 2010)

DIBELS Math

Part 2- BQD Beginning Quantity Discrimination

DIBELS ${ }^{\circ}$ Math

Underlying Concepts	DIBELS Math Measures
Magnitude Comparison	Beginning Quantity Discrimination Advanced Quantity Discrimination
Subitization	Beginning Quantity Discrimination (indirectly measured)
Strategic Counting	Next Number Fluency Missing Number Fluency
Number Identification	Number Identification
Basic Computation	Computation

Magnitude Comparison

What is it?
-Students' ability to discern quickly the greatest number in a set and ability to weigh relative differences in magnitude efficiently (Gersten et al., 2012)
-Requires understanding of place value and ability to perform mental calculations
-Complexity of items depends on the set of numbers given to the student
Why is it important?

- It is related to other critical areas of mathematical performance such as mental calculation and place value (Gersten et al., 2012).

What Is Subitization?

- The ability to instantly judge the number associated with a group of items.
- Different from counting
- Children as young as 2 begin to subitize small amounts
- Conceptual subitizing plays an advanced organizing role (Clements, 1999)
- For example, with the domino pattern students who are able to conceptually subitize recognize the number pattern as composite parts and as a whole

Why Is Subitization Important?

- Thought to be an important precursor to mathematics development
- Recent studies have linked subitizing ability to counting, arithmetic, and number system knowledge.
- Research has found that there is a significant link between subitizing ability and mathematical skills in kindergarten aged children (Yun et. al., 2011).
- Predictive of later mathematics
performance (Desoete \& Gregorie, 2006)

Beginning Quantity Discrimination

Skill Magnitude Comparison and Subitization (indirectly)

Administration
 Time

Administration
Schedule
BOY K to EOY K

Score 1 point for each correctly identified number

Wait Rule
If the student does not respond within 3 seconds on an item, provide the correct answer and mark a slash (/) through the number.

Discontinue Rule 0 points in the first four items (the first page)

Preliminary BQD Benchmark Goals

Grade	Score Level	Need for Support	BOY	MOY	EOY
	At or Above	Core	5	8	11
	Below	Strategic	$2-4$	$4-7$	$7-10$
	Well Below	Intensive	$0-1$	$0-3$	$0-6$

Beginning Quantity Discrimination Video

DIBELS Math

Part 3- \#IDF
 Number Identification Fluency

DIBELS ${ }^{\circ}$ Math

Underlying Concepts	DIBELS Math Measures
Magnitude Comparison	Beginning Quantity Discrimination Advanced Quantity Discrimination
Subitization	Beginning Quantity Discrimination (indirectly measured)
Strategic Counting	Next Number Fluency Missing Number Fluency
Number Identification	Number Identification Fluency
Basic Computation	Computation

Number Identification Fluency

What is it?
-Linking written numbers to names
-Equivalent to letter naming fluency in reading
Why is it important?
-Not necessarily a mathematical skill on its own, it serves as an important predictor of later skills.
-Number recognition is essential for later mathematical skills.

Number Identification Fluency (\#IDF)

Skill Number Identification

Administration
 Time
 1 minute

Administration Schedule

Beginning of kindergarten to beginning of first grade

Score 1 point for each correctly identified number

Wait Rule
If the student does not respond within 3 seconds on an item, provide the correct answer and mark a slash (/) through the number.

Discontinue Rule 0 points in the first five items (the first line)

Preliminary \#IDF Benchmark Goals

Grade	Score Level	Need for Support	BOY	MOY	EOY
Kindergarten	At or Above	Core	6	13	23
	Below	Strategic	3-5	7-12	13-22
	Well Below	Intensive	0-2	0-6	0-12
First Grade	At or Above	Core	27		
	Below	Strategic	15-26		
	Well Below	Intensive	0-14		

Number Identification Fluency Video

DIBELS Math

Part 4- NNF
 Next Number Fluency

DIBELS ${ }^{\circ}$ Math

Underlying Concepts	DIBELS Math Measures
Magnitude Comparison	Beginning Quantity Discrimination Advanced Quantity Discrimination
Subitization	Beginning Quantity Discrimination (indirectly measured)
Strategic Counting	Next Number Fluency Missing Number Fluency
Number Identification	Number Identification Fluency
Basic Computation	Computation

Strategic Counting

What is it?
-Knowledge of counting principles and skill in counting (Gersten et al., 2012)
-Examples include counting with reference to objects, counting on, being able to say counting words without reference to objects

Why is it important?
-It is a fundamental skill that leads to mathematical proficiency and understanding (Siegler \& Robinson, 1982)

Strategic counting is a critical problem solving skill (Gersten et al., 2012)

Next Number Fluency

Skill Counting (extending the counting sequence)

Administration
Time
1 minute

Administration
Schedule
Beginning of kindergarten to beginning of first grade

Score 1 point for each correct number

Wait Rule
If the student does not respond within 3 seconds on an item, mark a slash (/) through the number.

Discontinue Rule 0 points in the first five items (the first line)

Preliminary NNF Benchmark Goals

Grade	Score Level	Need for Support	BOY	MOY	EOY
	At or Above	Core	5	10	12
	Below	Strategic	$2-4$	$6-9$	$9-11$
	Well Below	Intensive	$0-1$	$0-5$	$0-8$
	At or Above	Core	12		
First Grade	Below	Strategic	$8-11$		
	Well Below	Intensive	$0-7$		

Next Number Fluency Video

DIBELS Math

Part 5- AQD
 Advanced Quantity Discrimination

DIBELS ${ }^{\circ}$ Math

Underlying Concepts	DIBELS Math Measures
Magnitude Comparison	Beginning Quantity Discrimination Advanced Quantity Discrimination
Subitization	Beginning Quantity Discrimination (indirectly measured)
Strategic Counting	Next Number Fluency Missing Number Fluency
Number Identification	Number Identification
Basic Computation	Computation

Magnitude Comparison

What is it?
-Students' ability to discern quickly the greatest number in a set and ability to weigh relative differences in magnitude efficiently (Gersten et al., 2012)
-Requires understanding of place value and ability to perform mental calculations
-Complexity of items depends on the set of numbers given to the student

Why is it important?

- It is related to other critical areas of mathematical performance such as mental calculation and place value (Gersten et al., 2012).

Advanced Quantity Discrimination

Skill Magnitude Comparison

Administration
Time

Administration
 Schedule

Beginning of first grade to end of first grade

Score

1 point for each correct number

If the student does not respond within 3 seconds on an
Wait Rule item, provide the correct answer and mark a slash (/) through the number

Discontinue Rule 0 points in the first six items (the first page)

Preliminary AQD Benchmark Goals

Grade	Score Level	Need for Support	BOY	MOY	EOY
	At or Above	Core	10	18	20
	Below	Strategic	$5-9$	$13-17$	$15-19$
	Well Below	Intensive	$0-4$	$0-12$	$0-14$

Advanced Quantity Discrimination Video

DIBELS Math

Part 6- ?NF Missing Number Fluency

DIBELS ${ }^{\circ}$ Math

Underlying Concepts	DIBELS Math Measures
Magnitude Comparison	Beginning Quantity Discrimination Advanced Quantity Discrimination
Subitization	Beginning Quantity Discrimination (indirectly measured)
Strategic Counting	Next Number Fluency Missing Number Fluency
Number Identification	Number Identification
Basic Computation	Computation

Strategic Counting

What is it?
-Knowledge of counting principles and skill in counting (Gersten et al., 2012)
-Examples include counting with reference to objects, counting on, being able to say counting words without reference to objects

Why is it important?
-It is a fundamental skill that leads to mathematical proficiency and understanding (Siegler \& Robinson, 1982).
-Strategic counting is a critical problem solving skill (Gersten et al., 2012).
-Allows for flexibility in mental computing

Missing Number Fluency (MNF)

Skill	Strategic Counting (extending the counting sequencecounting by $1 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$)
Administration Time	1 minute
Administration Schedule	Beginning of first grade to end of first grade
Score	1 point for each correct number
Wait Rule	If the student does not respond within 5 seconds on an item, provide the correct answer and mark a slash (/) through the number.
Discontinue Rule	0 points in the first six items

Preliminary MNF Benchmark Goals

Grade	Score Level	Need for Support	BOY	MOY	EOY
	At or Above	Core	4	7	9
	Below	Strategic	$2-3$	$5-6$	$7-8$
	Well Below	Intensive	$0-1$	$0-4$	$0-6$

Missing Number Fluency

DIBELS Math

Part 7
Computation

DIBELS ${ }^{\circ}$ Math

Underlying Concepts	DIBELS Math Measures
Magnitude Comparison	Beginning Quantity Discrimination Advanced Quantity Discrimination
Subitization	Beginning Quantity Discrimination (indirectly measured)
Strategic Counting	Next Number Fluency Missing Number Fluency
Number Identification	Number Identification
Basic Computation	Computation

Basic Computation

What is it?

-Addition
-Subtraction
-Multiplication
-Division
Why is it important?
-NAEP results in 2011 indicate that 40% of fourth grade students are at or above proficient (National Center for Education Statistics, 2011).
-40\% of the NAEP assessment in 4th grade focuses on number properties and operations, which are computation problems.
-Math computation plays a role in overall math achievement.

Computation

Skill Basic Computation

Administration
 Time
 $2,3,5,6$ minutes per worksheet depending on grade

Administration Schedule

Beginning of first grade to end of sixth grade

Score Correct digits in final answer

Wait Rule No wait rule

Discontinue Rule No discontinue rule

Preliminary Computation Benchmark Goals

Grade	Score Level	Need for Support	BOY	MOY	EOY
	At or Above	Core	5	9	13
	Below	Strategic	$2-4$	$5-8$	$9-12$
	Well Below	Intensive	$0-1$	$0-4$	$0-8$
Second Grade	At or Above	Core	7	10	13
	Below	Strategic	$4-6$	$7-9$	$10-12$
	Well Below	Intensive	$0-3$	$0-6$	$0-9$
Third Grade	Use L_ocal				

Preliminary Computation Benchmark Goals

Grade	Score Level	Need for Support	BOY	MOY	EOY
Fourth Grade	At or Above	Core	18	29	42
	Below	Strategic	$13-17$	$21-28$	$31-41$
	Well Below	Intensive	$0-12$	$0-20$	$0-30$
	At or Above	Core	29	48	53
Fifth Grade	Below	Strategic	$16-28$	$31-47$	$37-52$
	Well Below	Intensive	$0-15$	$0-30$	$0-36$
Sixth Grade	Use Local Norms				

Grade Level Time Limits for Computation Worksheets

Grade	Time Limit Per Worksheet	Total Time for Benchmark Assessment (2 Worksheets)
1 and 2	2 minutes	4 minutes
3	3 minutes	6 minutes
4	5 minutes	10 minutes
5	6 minutes	12 minutes
6	6 minutes	12 minutes

Practice Activity: Take the Test!

DIBELS ${ }^{\circledR}$ Math Early Release / Computation Grade 4
Benchmark 3 / Form B

1. $\begin{array}{r} 882 \\ +\quad 16 \\ \hline 898 \end{array}$	2. $\begin{array}{r} 118 \text { '54 } \\ +1778 \\ \hline 3632 \end{array}$	3. $5 \frac{1}{3}+1 \frac{1}{3}=6 \frac{2}{6}$	4. $\begin{array}{r} 9 \\ \times 7 \\ \hline 63 \end{array}$	5. $\begin{gathered} 42 \\ 4 \longdiv { 7 3 8 } \end{gathered}$	
6. $\begin{array}{r} 672 \\ -332 \\ \hline 340 \end{array}$	7. $\frac{5}{6}-\frac{2}{6}=\frac{3}{6}$	8. $\begin{array}{r} 7126 \\ -\quad 638 \\ \hline 7512 \end{array}$	9. $\begin{array}{r} 79 \\ \times 11 \\ \hline 79 \\ \times 79 \\ \hline 869 \end{array}$	10. $6 \frac{5}{8}+5 \frac{2}{8}=\\| \frac{7}{8}$	
$\begin{array}{ll} \hline 11 . & 80 \\ & 2 \longdiv { 6 2 7 } \end{array}$	12. $\stackrel{3}{7}{ }_{21}$	$\text { 13. } \begin{array}{r} 3 \\ 98 \\ \times 48 \\ \sqrt{768} \\ \hline 4920 \\ \hline 4688 \end{array}$	$\frac{14}{14}+\frac{1}{4}=$	15. $\begin{array}{r} 253 \\ \times \quad 6 \\ \hline \end{array}$	

Practice Activity: Score

DIBELS ${ }^{\ominus}$ Math Early Release / Computation Grade 4 Benchmark 3 / Form B

Total:

1. $\begin{array}{r} 882 \\ +\quad 16 \\ \hline 898 \end{array}$ $\uparrow \uparrow \uparrow$ (3)	2. $\begin{array}{r} 118 ' 54 \\ +1778 \\ \hline 3632 \\ \uparrow \uparrow \uparrow \uparrow \end{array}$	3. $5 \frac{1}{3}+1 \frac{1}{3}=6 \frac{1}{6}$ (2)	4. $\begin{array}{r} 9 \\ \times 7 \\ \hline 63 \end{array}$ (2)	5. $\begin{gathered} 42 \\ 4 \longdiv { 7 3 8 } \end{gathered}$	
6. $\begin{array}{r} 672 \\ -332 \\ \hline 340 \end{array}$ (3)	7. $\frac{5}{6}-\frac{2}{6}=\frac{3}{6}$	8. $\begin{array}{r} 7126 \\ -\quad 638 \\ \hline 7512 \end{array}$	9. $\begin{array}{r} 79 \tag{8}\\ \times 11 \\ 179 \\ \times 790 \\ \hline 869 \end{array}$	10. $6 \frac{5}{8}+5 \frac{2}{8}=\\| \frac{7}{8}$ (4)	
$\begin{array}{rr}\text { 11. } & 80 \\ & 2 \longdiv { 6 2 7 }\end{array}$	12. $\frac{3}{7 \longdiv { 2 1 }}$	13. $\begin{array}{r} 38 \\ 98 \\ \times 48 \\ \frac{3988}{768} \\ \hline 4688 \end{array}$	14. $\frac{1}{4}+\frac{1}{4}=$	15. $\begin{array}{r} 253 \\ \times \quad 6 \\ \hline \end{array}$	

Response Pattern Analysis

- Student Computation Worksheet(s)
- Benchmark Scoring Booklet
* Note the last item attempted
* Circle Correct Items
* Put X on Incorrect Items
* Leave Blank Skipped or Not Attempted Items

DIBELS Math

Part 8-C\&A Concepts and Applications

Concepts and Applications

What is it?
-A standardized measure designed to assess students' progress in the basic skills of understanding mathematical concepts and vocabulary and applying that knowledge to solve mathematical problems. It can be administered individually or to groups.

Concepts and Applications

Skill	Understanding math concepts and vocabulary, and applying that knowledge to solving problems
Administration	$5,10,12,14$ or 16 minutes per worksheet depending on grade
Administration Schedule	Beginning of second grade to end of sixth grade
Score	Correct digits in final answer, exact answer points per box, exact answer points per line, or exact answer points per segment
Wait Rule	No wait rule
Discontinue Rule	No discontinue rule

Grade Level Time Limits for Worksheets

Grade	Time Limit
2	5 minutes
3	12 minutes
4	10 minutes
5	14 minutes
6	16 minutes

Concepts and Applications

- Practice Activity: Take the Test!
- Practice Activity: Score
- Response Pattern Analysis
-Student Concepts \& Applications Worksheet
-Benchmark Scoring Booklet
* Note the last item attempted
* Circle Correct Items
* Put X on Incorrect Items
* Leave Blank Skipped or Not Attempted Items

DIBELS Math

Part 9

Common Core State Standards \& Vmath Summer Modules

DIBELS Math

Part 10
Conclusion \& Next Steps

